INTRODUCTION
Aphrodite was the goddess of love[1][2] and beauty. The present day meaning of love potion can differ, anyway is by and large viewed as a substance that will build sexual want. The present examination was intended to assess the aphrodisiac activity of Rosa damascena Mill. petals. Animals treated with rose petal extract showed significant difference in Mount frequency, Mount latency, Intromission frequency, Intromission latency as compared to control. It also showed significant difference in sperm count and sperm motility and protected the architecture of testis as compared stress control group. In this investigation can be reasoned that the herb Rosa damascena Mill is a protected medication and can be valuable in improving the male sexual movement and treating different sexual issue like impotency, erectile disappointment, untimely discharge, absence of sexual want and ejaculator inadequacy.

KEYWORDS: Aphrodisiac, Erectile dysfunction, Rosa damascena Mill.

MATERIALS AND METHODS
Collection of plant
The petals of herb Rosa Damascena mill were procured from the market of Ongole, Prakasam dist, Andhra Pradesh, India and authenticated.

Preparation of alcoholic extract
Shade dried petals of Rosa Damascena mill were powdered and extraction was carried using soxhlet apparatus ethanol as solvent.[6]

Animals
Albino rats (Mahaveer enterprises, Hyderabad, India) of either sex weighing about 200-250gm were incorporated into the investigations. The animals were maintained under standard lab conditions at an encompassing room temperature of 24±2°C having 50 ± 5% relative dampness with 12h light and dim cycle. The use and care of the animals in the experimental protocol has been endorsed by the Institutional Animal Ethics Committee (Regd. No. 1921/PO/Re/16/CPCSEA) following the guidelines of the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA).

Evaluation for aphrodisiac activity
Male Albino rats weighing about 150-200 g were divided into four groups, each consisting of six rats. Group-I: Treated with distilled water (normal control) p.o. Group-II: Treated with dose of 0.7 mg/kg p.m. Sildenafil citrate
Group-III: Treated with lower dose of Rosa damascena Mill petals extract of ethanol (200mg/kg) p.o. Group-IV: Treated with higher dose of Rosa damascena Mill petals extract of ethanol (400mg/kg) p.o. All the treatments were given continuously for 14 days. On 14th day, after treatment, all animals were allowed for mating and Mount frequency, Mount latency, Intromission frequency, Intromission latency were recorded for evaluating aphrodisiac activity.[7]

Effect on Stress induced sexual behaviour in male rats
Male Albino rats weighing about 250-300 g were allocated into five groups and each consisting of six rats. Group-I: normal control (treated with distilled water 3ml/kg) (without stress) p.o. Group II: Stress control (treated with distilled water 3ml/kg) (with stress) p.o. Group-III: Treated with dose of 0.05mg per rat i.m Testosterone Group-IV: Treated with lower dose of Rosa damascena Mill petals extract of ethanol (200mg/kg) p.o. Group-V: Treated with higher dose of Rosa damascena Mill petals extract of ethanol (400mg/kg) p.o All the treatments were given for 28 consecutive days before they were subjected to Immobilization stress.

Induction of Immobilization stress
The animals were exposed to IMB stress by Plexiglas chamber (5 cm distance across and 16 cm enormous and 4 openings) for 6 hours daily during light period began from 9 am every day for 28 back to back days. Water and nourishment were evacuated during pressure period.

Sexual accessory Organ to body weight ratio
Body weight of each animal was measured on first day before the IMB stress and last 28th day after IMB stress and drug treatment. The percentage change in body weight was calculated. On day 28th light ether Anaesthesia animals were sacrificed. Male reproductive accessory organs like, testis, epididymis, prostate glands, vasdeferens, seminal vesicles and adrenal glands were isolated. Isolated organ are weighed to measure organ to body weight ratio.[8]

Sperm count
Spermatozoa were isolated by flushing the vas deferens and epididymis in 2.0ml of saline. Pipette the semen by using WBC pipette up to the mark 0.5. Pipette 4% sodium bicarbonate in 1% phenol up to the mark 11 on WBC Pipette and the dilution of 1 in 20. By using high power in the four WBC squares no of sperms were counted.

Calculation
Number of sperms in 1 cu.mm of sample = N x 10/4 x 20
Number of sperms in 1 ml (i.e.1 cu.cm) of sample:
= N x 50 x 1000(as 1 cu.cm=1000cu.mm)
= N x 50,000
Where N is the total sperm count observed in outer four square of WBC chamber.

Sperm motility
A drop of semen was set on the spread slip and rearranged it on an edge of plasticine on the pit slide. Analysed under high power microscope objective and estimate the immobile to mobile sperms percentage.

Histology of testis
Testis of each group was removed by excision and cleaned with 0.9% saline smeared dry of saline and overabundance blood. They are fixed in 12% formalin for 24 hrs. The tissues, after obsession, were washed in water to evacuate abundance fixative. Washed tissues were dried out through a reviewed arrangement of Ethylalcohol, cleared with xylene and inserted in paraffin wax. Segments were cut at 3 μm with microtome sharp edge, and mounted on clean glass slide. The segments were recolored with haematoxylin and eosin. The recolored slides were watched (400 X) in research magnifying lens and photographs were caught by utilizing camera.

RESULTS
Evaluation of Phytochemical constituants in Rosa damascena Mill petals extract
From the Phytochemical screening results revealed that ethanolic extract of Rosa damascena Mill consists of carbohydrates, proteins, alkoloids, glycosides flavanoids and Volatile oil.

Aphrodisiac activity
Mount frequency
The results shown that a significant increase in mount frequency was observed in animals treated with ethanolic extract of Rosa damascena Mill petals at lower and higher concentrations when compared to control group rats.

LERD: Low dose of ethanolic extract of Rosa damascena mill (200mg/kg)
HERD: High dose of ethanolic extract of Rosa damascena mill (400mg/kg)
Values are Mean ± SEM (n=6) one way ANOVA followed by Dunnett’s‘t’ test.
Where * represents very significant at p< 0.05 when compared to control group

Fig 1: Effect of Rosa damascena Mill petals extract on Mount frequency in male rats.

Mount latency
Mount latency of control rats showed 260±1.22. Mount latency significantly decreased in standard Sildenafil treated rats. Rats treated with Rosa damascena petals extract 200 and 400mg/kg. b.w showed significant decrease in mount latency as compared to control group rats.

LERD: Low dose of ethanolic extract of Rosa damascene mill (200mg/kg)
HERD: High dose of ethanolic extract of Rosa damascene mill (400mg/kg)
Values are Mean ± SEM (n=6) one way ANOVA followed by Dunnett’s ‘t’ test.
Where * represents very significant at p< 0.05 when compared to control group

Fig 2: Effect of Rosa damascena Mill petals extract on Mount latency in male rats.

Intromission frequency
The results expressed that ethanolic extract of Rosa damascena Mill at lower and higher concentration significantly increased Intromission frequency according to the dose concentration as compared to control group rats, similar activity as that of standard drug. However, ethanolic extract of Rosa damascena Mill at lower dose has less intromission frequency as compared to high dose.

LERD: Low dose of ethanolic extract of Rosa damascene mill (200mg/kg)
HERD: High dose of ethanolic extract of Rosa damascene mill (400mg/kg)
Values are Mean ± SEM (n=6) one way ANOVA followed by Dunnett’s ‘t’ test.
Where * represents very significant at p< 0.05 when compared to control group

Fig 3: Effect of Rosa damascena Mill petals extract on Intromission frequency in male rats.

Intromission latency
The rats treated with standard drug and Rosa damascena Mill extract significantly reduced the intromission latency as compared to the control group of rats.
LERD: Low dose of ethanolic extract of *Rosa damascena* mill (200mg/kg)
HERD: High dose of ethanolic extract of *Rosa damascena* mill (400mg/kg)

Values are Mean ± SEM (n=6) one way ANOVA followed by Dunnett’s ‘t’ test.
Where * represents very significant at p< 0.05 when compared to control group.

Sexual accessory Organ to body weight ratio
LERD: Low dose of ethanolic extract of *Rosa damascena* mill (200mg/kg)
HERD: High dose of ethanolic extract of *Rosa damascena* mill (400mg/kg)
Values are Mean ± SEM (n=6) one way ANOVA followed by Dunnett’s ‘t’ test.
Where * represents very significant at p< 0.05 when compared to control group.

Effect on Stress induced sexual behaviour in male rats
Sperm count
The Control group rats sperm count was found to be 91.66±3.49. The sperm count of stress control rats shown 42.22±2.66. Significant decrease in sperm count was observed in stress control rats as compared to the control group rats. A significant increase in Sperm count was observed in animals treated with standard drug and *Rosa damascena* Mill petals extract.

Table 1: Sexual accessory Organ to body weight ratio.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Dose</th>
<th>Change in body weight (% in g)</th>
<th>Testes (mg/g)</th>
<th>Vasa deferens (mg/g)</th>
<th>Seminal vesicles (mg/g)</th>
<th>Adrenal Glands (mg/g)</th>
<th>Prostate Gland (mg/g)</th>
<th>Epididymis (mg/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>3ml DL</td>
<td>39±3.94</td>
<td>9.2±2.34</td>
<td>0.19±0.09</td>
<td>2.5±0.19</td>
<td>0.11±0.02</td>
<td>1.89±0.12</td>
<td>1.78±0.32</td>
</tr>
<tr>
<td>Stress control</td>
<td>3ml DL</td>
<td>15±2.66</td>
<td>4.2±1.29</td>
<td>0.11±0.06</td>
<td>1.2±0.13</td>
<td>0.05±0.01</td>
<td>0.99±0.29</td>
<td>0.72±0.12</td>
</tr>
<tr>
<td>Standard drug</td>
<td>0.7 mg/kg</td>
<td>20±3.12*</td>
<td>8.8±3.23*</td>
<td>0.18±0.02*</td>
<td>2.2±0.14*</td>
<td>0.09±0.02*</td>
<td>1.55±0.32*</td>
<td>1.3±0.25*</td>
</tr>
<tr>
<td>LERD</td>
<td>200mg/kg</td>
<td>21±4.82*</td>
<td>6.9±2.25*</td>
<td>0.15±0.04*</td>
<td>1.9±0.17*</td>
<td>0.07±0.01*</td>
<td>1.2±0.51*</td>
<td>0.98±0.26*</td>
</tr>
<tr>
<td>HERD</td>
<td>400mg/kg</td>
<td>19±3.33*</td>
<td>8.1±1.69*</td>
<td>0.17±0.03*</td>
<td>2.1±0.18*</td>
<td>0.08±0.02*</td>
<td>1.45±0.23*</td>
<td>1.25±0.11*</td>
</tr>
</tbody>
</table>

Sexual accessory Organ to body weight ratio was depicted in Table.1 Stress control group rats testis, epididymis vasa deferens, seminal vesicles, prostate glands and adrenal glands weight ratio was significantly decreased when compared Normal control. Reduction of all organ to body weight ratio was prevented significantly in testosterone, *Rosa damascena* mill treated groups.

Fig. 4: Effect of *Rosa damascena* Mill petals extract on Intromission latency in male rats.

Fig. 5: Effect of *Rosa damascena* Mill petals extract on Sperm Count (Total x 10^6) in male rats.
Sperm motility
The sperm motility of normal control rats was found to be 71.6±2.49. A significant decrease in sperm motility was observed in stress control rats. The rats treated with standard drug and *Rosa damascena Mill* petals showed significant increase in sperm motility.

Sperm Motility (%)

![Graph showing sperm motility for different groups](image)

<table>
<thead>
<tr>
<th>Groups</th>
<th>Sperm Motility (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>70</td>
</tr>
<tr>
<td>Stress control</td>
<td>25</td>
</tr>
<tr>
<td>Standard drug</td>
<td>60</td>
</tr>
<tr>
<td>LERD</td>
<td>65</td>
</tr>
<tr>
<td>HERD</td>
<td>65</td>
</tr>
</tbody>
</table>

LERD: Low dose of ethanolic extract of *Rosa damascene mill* (200mg/kg)
HERD: High dose of ethanolic extract of *Rosa damascene mill* (400mg/kg)
Values are Mean ± SEM (n=6) one way ANOVA followed by Dunnett’s ‘t’ test.
Where * represents very significant at p< 0.05 when compared to stress control group

Fig. 6: Effect of *Rosa damascena Mill* petals extract on Sperm Motility (%) in male rats.

HISTOPATHOLOGY OF TESTIS

![Histopathology images](image)

CONTROL STRESS CONTROL
HISTOPATHOLOGY OF TESTIS
In this study, histopathology of rat testis was carried to find out the changes produced due to IMB stress for a period of 28 days.

Ordinary histology of testis was seen in typical control rats like, firmly packed seminiferous tubules and basement membrane. Spermatogenic cells and spermatozoa were found numerously. Lumen was filled with tailed sperms.

Absence of spermatozoa, basement membrane thickening, a layer of spermatogenic cells were observed in stress control group. Normal structure of basement membrane, sperm cells, maturation and dominant spermatocytes were observed in testosterone treated group. Treatment with Rosa damascena Mill shown thick layer of basement membrane, more number of sertoli cells and dominant spermatocytes. Maturation was arrested in cells of seminiferous tubules.

Treatment with Rosa damascena Mill extract to the rats protected from stress induced thin spermatogenesis layer, spermatozoa cell absence and constricted blood vessel. The treatment with this extract increased number of sertoli cells and spermatocytes.

CONCLUSION
From results acquired in this investigation can be reasoned that the herb Rosa damascena Mill is a protected medication and can be valuable in improving the male sexual movement and treating different sexual issue like impotency, erectile disappointment, untimely discharge, absence of sexual want and ejaculator inadequacy. Be that as it may, further definite investigations are expected to affirm the helpfulness this plant extricate in treating sexual issue.

REFERENCES