FORMULATION AND EVALUATION OF MUCOADHESIVE MICROSPHERES OF TERBUTALINE SULPHATE BY SOLVENT EVAPORATION METHOD

Khushboo Shriwas* and Niranjan S. K.

Department of Pharmaceutics, Institute of Pharmacy, Bundelkhand University Jhansi - 284128, Uttar Pradesh, India.

*Corresponding Author: Khushboo Shriwas
Department of Pharmaceutics, Institute of Pharmacy, Bundelkhand University Jhansi - 284128, Uttar Pradesh, India.

ABSTRACT
In the present study is regarding formulation and evaluation of terbutaline sulphate mucoadhesive microspheres by solvent evaporation method. The mucoadhesive microspheres were successfully developed by W/O emulsion solvent evaporation method. A total of nine formulations were prepared i.e MM1, MM2, MM3, MM4, MM5, MM6, MM7, MM8 and MM9. The particle size of all the formulations were ranged between 128.80±11.12 and 152.42±17.13. The entrapment efficacy was ranged between 71.54 And 64.48. Based on above parameters three formulation were selected i.e MM3, MM5 and MM8 for further studies like micromeritic property swelling index and in vitro release study. The optimized batch MM3 was found to release the drug for 16h (94.4%) and follows higuchi matrix model and korsmeyer-peppas equation in dissolution study. Stability studies showed almost negligible changes in particle size, entrapment efficiency and drug release throughout the study period.

KEYWORDS: Terbutaline sulphate, microspheres, Higuchi model, korsmeyer-peppas equation and stability studies.

INTRODUCTION
The term microsphere is defined as a spherical particle with size from 1 um -1000um. The microsphere are typical free flowing powder consist of synthetic polymer which are Biod E.g. radable in nature and having particle size less than 200 um. The microspheres are made from highly transparent glass can perform as much high quality optical micro cavities or micro resonators. The success of these microspheres is limited having provided intimate contact of the of the drug delivery system with the absorbing membranes.[1,2] Mucoadhesion or bioadhesion can be characterized as the state in which two material (something like one of which is biological in nature) are held together for a delayed time period and by means of interfacial force. Mucoadhesive dosage form might be intended to delayed the retention time at the site of application, giving a controlled rate of medication discharge for enhanced therapeutic outcome.[3,4] Mucoadhesive or bioadhesive can be characterized as the state in which two material (something like one of which is biological in nature) are held together for a delayed time period and by means of interfacial force. Mucoadhesive dosage form might be intended to delayed the retention time at the site of application, giving a controlled rate of medication discharge for enhanced therapeutic outcome.[3,4]

Asthma is one of the leading disease in the world and needs some serious attention. It can lead to various compilations. Like bronchospasm, Respiratory failure, chronic obstructive pulmonary diseases.[5]

Terbutaline stimulates β-adenergic receptors of the sympathetic nervous system and has little or no effect on α-adrenergic receptors.[6] Despite its low and stereoselective bioavailability, terbutaline is widely used as a bronchodilator for treatment of bronchial asthma, chronic bronchitis and emphysema. On otherhand, terbutaline has not been approved and should not be used without permission on the patient in preterm labor.[7]

Terbutaline is a synthetic β2-adrenocceptor stimulant that is used as a bronchodilator in the treatment of bronchial Asthma. It is known chemically as –α-[(-tert-butylamino)] methyl 1]-3,5-dihydroxy-benzyl alcohol (C12H14NO3) Mol.Wt. 225.29. It exits as a racemic mixture [(+ and (-) terbutaline] and has the chemical structure shown below.[8]

Structure of terbutaline sulphate
Terbutaline given as the sulfate (TBS). it is a white to gray-white, crystalline, powder; odorless or with a faint odor of acetic acid; and slightly bitter. It is unstable in light and melts at about 247°C.
MATERIALS AND METHOD

Materials:- Terbutaline sulphate was obtained by the yarrow chem. Products from the Mumbai. The polymers hydroxyl methyl cellulose (HPMC) and carbopol 934p (Cp) were obtained from central drug house Mumbai. Dicholoromethane, methanol and sodium lauryl sulphate were also obtained from central drug house Mumbai.

Formulation of terbutaline sulphate microspheres

Drug loaded microsphere were prepared by water in oil (w/o) emulsification solvent evaporation method. For this, 50 mg of drug dissolved in 5 ml dimethyl sulfoxide, and then it was dispersed into 45 ml of 2% aqueous polymer solution. A vortex homogenizer was used for rapid mixing of the drug solution into the aqueous polymer solution for 3 minutes. Then drug and polymer solution was added drop wise to 400 ml of the liquid paraffin containing 0.5% span 20 as an emulsifying agent with constant stirring at 500 rpm. The constant stirring was carried out using magnetic stirrer. The beaker and its content were heated at 800C with constant stirring for 4.5 hrs until the aqueous phase was completely removed by evaporation. The liquid paraffin was decanted and collected microsphere were washed 5 times with 100 ml of n-hexane, filtered through whatman’s filter paper, dried in hot air oven at 500C for 2 hrs and stored in a desiccator at room temperature. For each formulation, 3 batches of microspheres were prepared for the purpose of assessing the reproducibility of drug loading, particle size, % mucoadhesion and in-vitro drug release by this method.

Table 1: Formulation specification of the prepared mucoadhesive microspheres.

<table>
<thead>
<tr>
<th>S.no</th>
<th>Formulation code</th>
<th>(Terbutaline sulphate)</th>
<th>HPMC (mg)</th>
<th>Carbopol 934p (mg)</th>
<th>Sodium alginate (mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MM 1 (1:1)</td>
<td>50 mg</td>
<td>50 mg</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>MM 2 (1:1.5)</td>
<td>50 mg</td>
<td>75 mg</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>MM 3 (1:2)</td>
<td>50 mg</td>
<td>100 mg</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>MM 4 (1:1)</td>
<td>50 mg</td>
<td>-</td>
<td>50 mg</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>MM 5 (1:1.5)</td>
<td>50 mg</td>
<td>-</td>
<td>75 mg</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>MM 6 (1:2)</td>
<td>50 mg</td>
<td>-</td>
<td>100 mg</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>MM 7 (1:1)</td>
<td>50 mg</td>
<td>-</td>
<td>-</td>
<td>50 mg</td>
</tr>
<tr>
<td>8</td>
<td>MM 8 (1:1.5)</td>
<td>50 mg</td>
<td>-</td>
<td>-</td>
<td>75 mg</td>
</tr>
<tr>
<td>9</td>
<td>MM 9 (1:2)</td>
<td>50 mg</td>
<td>-</td>
<td>-</td>
<td>100 mg</td>
</tr>
</tbody>
</table>

Where, Drug = Terbutaline Sulphate
HPMC = Hydroxypropyl methylcellulose
MM = Mucoadhesive microsphere
MM = Mucoadhesive microsphere

Particle size analysis

Particle size of different batches of microspheres was determined by optical microscopy. The projected diameter of microspheres from each batch was determined using ocular micrometer and stage micrometer equipped with optical microscope. Analysis was carried out by observing the slide containing microspheres under the microscope. The average particle size of the microspheres was expressed as diameter. The mean microsphere size was calculated by measuring 100 particles with the help of a calibrated ocular micrometer.[9]

D Mean = Number of microspheres observed / Mean size range

Drug entrapment efficiency

To determine the drug entrapment efficiency or incorporation efficiency the microspheres were crushed in glass mortar and powered, then suspended in 10 ml of methanol, after 24 hrs. The solution was filtered and filtrate was analyzed for drug content. The drug incorporation efficiency was calculated by the following formula.[10]

\[
\text{Incorporation efficiency} = \frac{b}{a} \times 100
\]

b = calculated amount of drug present in the formulation,
a = theoretical amount of drug present in the formulation,
Scanning electron microscopy (SEM)
Scanning electron microscopy (SEM) was done to study morphology of microspheres. Surface morphology of microspheres was studied under scanning electron microscope (JEOL, JSM 5760 LY). Samples were mounted on stubs and coated for 120 seconds with a layer of gold using a sputter coater (polaron SC 502). SEM photographs were taken at room temperature (25°C) using a low beam voltage of 20 kV and 15 kV.\[11\]

Micromeritic properties
Bulk density
Bulk density of formulated microspheres was determined by taking a known mass of microspheres in a 5 ml graduated measuring cylinder. The cylinder was dropped three times from a height of one inch at an interval of two seconds. The bulk density was calculated by following equation.\[12\]

\[
\text{Bulk density} = \frac{\text{Total weight of powder}}{\text{Total bulk volume}}
\]

Tapped density
Tapped density is the volume of powder determined by tapping using measuring cylinder containing weighed amount of sample. Tapped density of microspheres was calculated by following equation.

\[
\text{Tapped density} = \frac{\text{Total weight of powder}}{\text{Total tapped volume}}
\]

Compressibility index
It is indirect measurement of bulk density, size and shape, surface area, moisture content, and cohesiveness of materials since all of them can influence the consolidation index. It is also called as compressibility index.

\[
\text{Compressibility index} \% = \frac{\text{Tapped density} – \text{Bulk density} \times 100}{\text{Tapped density}}
\]

Hausner’s ratio
Hausner’s ratio of microspheres is determined by comparing the tapped density to the bulk density using the equation.

\[
\text{Hausner’s ratio} = \frac{\text{Tapped density}}{\text{Bulk density}}
\]

In vitro drug dissolution
USP 23 type-2 rotating paddle dissolution test apparatus (electrolab, EDT-08Lx) was used to study the in vitro drug dissolution. 900 ml phosphate buffer (pH 6.8) at 37±5°C stirred at 100 rpm was used as the dissolution medium. 100mg equivalent of drug samples of microspheres were placed in the dissolution medium. Samples (1 mL) were withdrawn at pre-determined time intervals (1, 2, 3, 4, 5, 8, 10, 12 and 14 hrs) and replaced with equal volumes of dissolution medium. Samples were filtered through 0.46µm filter and appropriately diluted with phosphate buffer (PH 6.8) and analysed UV spectrophotometrically at 276nm. Drug release mechanism was determined by finding the best fit of the release data of Higuchi and Korsmeyer-peppas plots.\[13\]

Stability studies
The stability of a drug product is the ability of a particular formulation, in a specific container, to remain within its physico-chemical, therapeutic and toxicological specifications. Stability testing provides evidence on how the quality of a drug substance or drug product varies with time under the influence of a variety of environmental factors such as temperature, humidity, and light and enables recommended storage conditions, retest periods, and shelf lives to be established.\[14\]

RESULT AND DISCUSSION
A total of 9 formulations, MM1, MM2, MM3, MM4, MM5, MM6, MM7, MM8, and MM9 were prepared using HPMC and Carbopol by solvent evaporation technique using distilled water as continuous phase. Use of water as a solvent was the reason for the long duration of drying time during the formulation step.

Partial size analysis, percentage yield, entrapment efficiency and scanning electron microscopy
The particle size of Terbutaline Sulphate microspheres was analyzed by optical microscopy. The average particle size was found to be in the range of 128.80±11.12 to 152.42±17.13 µm. The average particle size of microspheres was found to be increased as the concentration of the polymer was increased. This may be due to increased coat thickness with increasing polymer proportion. Particle size of the microspheres was large. The particle size shown in table.

Micromeritic properties
The Micromeritic studies revealed that the microspheres have better flow properties which indicate the microspheres produced are spherical and non-aggregated. The, Bulk density, Tapped density, Compressibility index, Angle of repose and Hausner’s ratio for all formulations i.e. MM1 to MM9 were found to be in the range of 0.63±0.03 to 0.82±0.07, 0.131±0.004 to 0.212±0.007, 28.31±5.09 to 17.78±8.89 and 35.78±1.30 to 28.30±0.43 and 0.20±0.133 to 0.25±0.10 respectively. All the formulations showed excellent flow ability as expressed in term of Micromeritic parameters. The results are shown in table.
Table: Determination of Entrapment Efficiency.

<table>
<thead>
<tr>
<th>Batch</th>
<th>MM 1</th>
<th>MM 2</th>
<th>MM 3</th>
<th>MM 4</th>
<th>MM 5</th>
<th>MM 6</th>
<th>MM 7</th>
<th>MM 8</th>
<th>MM 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entrapment efficacy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formulation code</td>
<td>Theoretical drug content (mg)</td>
<td>Practical drug content (mg)</td>
<td>% Drug content</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MM1</td>
<td>7.31</td>
<td>5.23</td>
<td>71.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MM2</td>
<td>5.12</td>
<td>5.11</td>
<td>99.80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MM3</td>
<td>3.61</td>
<td>1.66</td>
<td>46.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MM4</td>
<td>4.19</td>
<td>1.52</td>
<td>36.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MM5</td>
<td>2.70</td>
<td>1.24</td>
<td>46.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MM6</td>
<td>2.44</td>
<td>1.52</td>
<td>62.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Surface morphology by Scanning Electron Microscopy (SEM)
SEM was performed for morphological characterization of microspheres. The microspheres were found to be discrete, spherical and free flowing. The SEM photographs indicated that the microspheres were spherical and completely covered with the coat polymer.

Fig. no. 1: Scanning Electron Micrographs of Terbutaline.

Fig. no. 2: Scanning Electron Micrographs of Mucoadhesive Microspheres MM1.

Fig. no. 3: Scanning Electron Micrographs of Mucoadhesive Microspheres MM2.

Fig. no. 4: Scanning Electron Micrographs of Mucoadhesive Microspheres MM3.

9 In-vitro drug release study
Terbutaline Sulphate release from the microspheres was studied at pH 6.8 buffer solution for 16 hours. Terbutaline Sulphate release from the microspheres was slow and depended on the composition of the coat. Microspheres of a sodium alginate carbopol 934 P gave relatively slow release when compared to others. The order of increasing release rate observed with various microspheres was sodium alginate-carbopol 934 P < sodium alginate-chitosan < sodium alginate-HPMC. It has been also found that the release rate was decreased with the increasing ratio of sodium alginate in the coat composition.
Table: Comparative Drug Release Profile of Microspheres MM1, MM2, and MM3.

<table>
<thead>
<tr>
<th>S. No</th>
<th>Time (Hours)</th>
<th>% Cumulative drug release MM1</th>
<th>% Cumulative drug release MM2</th>
<th>% Cumulative drug release MM3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2.0</td>
<td>2.8</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>16.0</td>
<td>16.7</td>
<td>23.5</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>28.1</td>
<td>24.6</td>
<td>31.4</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>36.4</td>
<td>32.5</td>
<td>40.4</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>45.3</td>
<td>41.4</td>
<td>45.6</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>53.7</td>
<td>46.7</td>
<td>49.4</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>60.4</td>
<td>53.0</td>
<td>56.3</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>67.4</td>
<td>58.2</td>
<td>60.5</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>75.0</td>
<td>65.2</td>
<td>64.3</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
<td>83.1</td>
<td>70.4</td>
<td>70.4</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>92.3</td>
<td>86</td>
<td>78.7</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>95.6</td>
<td>87.1</td>
<td>86.5</td>
</tr>
<tr>
<td>14</td>
<td>16</td>
<td>97.6</td>
<td>91.3</td>
<td>94.4</td>
</tr>
</tbody>
</table>

Cumulative Drug Release of Microspheres MM1, MM2, MM3

Stability study
Terbutaline Sulphate microspheres were filled in high-density polyethylene HDPE containers at 30°C / 60% RH, 35°C / 60% RH and 45°C / 75% RH for 2 months as per ICH specifies the length of study and storage conditions. After each month microspheres were evaluated for their drug entrapment efficiency and drug release study. From the studies it was found that the formulation was stable since there was no difference in the drug entrapment efficiency and drug release pattern of the formulation.

Table: Incorporation efficiency data of formulation MM3 for stability study.

<table>
<thead>
<tr>
<th>S. NO.</th>
<th>Condition</th>
<th>Time</th>
<th>Zero month</th>
<th>First month</th>
<th>Second month</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30°C / 60% RH</td>
<td>71.00</td>
<td>71.8</td>
<td>72.6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>35°C / 60% RH</td>
<td>71.00</td>
<td>70.3</td>
<td>71.7</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>45°C / 75% RH</td>
<td>71.00</td>
<td>70.5</td>
<td>71.3</td>
<td></td>
</tr>
</tbody>
</table>

8.2 CONCLUSION
Terbutaline Sulphate is an oral antiasthmatic drug belongs to bronchodilators class that has been widely used in management of Asthma. Being an antiasthmatic it is safe and efficacious candidate for treating bronchial smooth muscles.

The terbutaline sulphate microspheres were prepared successfully by solvent evaporation technique using combination of novel polymer and the in vitro release studies have shown that better release profile with combination of polymers especially with increase in carbopol concentration.

ACKNOWLEDGEMENT: The authors thankful to Dr. S. K. Niranjan for his valuable guidance.

CONFLICT OF INTEREST: NIL.
REFERENCES

