HYPOGLYCEMIANT AND ANTI-HYPERGLYCEMIANT EFFECTS OF THE AQUEOUS EXTRACT OF ROASTED AND GROUND COFFEE BEANS OF COFEA CANEPHORA ROBUSTA IN THE WISTAR RAT

1*AKA Francis Beranger Angelo, 2Amonkan Kouao Augustin, 3NANTI Goore Guy Charles Gole, 4Kahou Bi Gohi Parfait, 5NENE BI Semi Anthelme and 6Katy-Coulibaly Séraphin

1,2,6Department of Nutrition and Pharmacology, University Felix Houphouet Boigny, 22 BP 582 Abidjan 22, Ivory Coast.
3,4,5Department of Animal Physiology, University Felix Houphouet Boigny, 22 BP 582 Abidjan 22, Ivory Coast.

*Corresponding Author: AKA Francis Beranger Angelo
Department of Nutrition and Pharmacology, University Felix Houphouet Boigny, 22 BP 582 Abidjan 22, Ivory Coast.

ABSTRACT
The beverage from the roasted and ground coffee of Coffea (coffee), which for a long has been on the dock, alongside alcohol, tobacco and drugs, has been recognized for over a decade as a drink with positive effects on health. Among these benefits is an inverse association between low coffee consumption and a high prevalence of type 2 diabetes. This study aims to evaluate the hypoglycemic and anti-hyperglycemic activities of the various drinks derived from the aqueous extract of the roasted and ground coffee beans of Coffea canephora robusta. A hypoglycemic effect was observed at doses of 5, 20 and 100 mg/kg bw, respectively for the various extracts of ARE, AE and EE administered orally. EE at the dose of 100 mg/kg bw significantly reduced hyperglycemia induced by administration of 3 g/kg bw of glucose, as did glibenclamide at 10 mg/kg bw. The presence of polyphenols, flavonoids and saponosides in the extract may provide an explanation for the hypoglycemic and anti-hyperglycemic effects observed. Moreover, these same effects would explain the preventive action of this drink (coffee) as to the occurrence of diabetes type 2.

KEYWORDS: Coffea canephora robusta, diabetes mellitus, hypoglycemia, antihyperglycemia, glibenclamide.

1. INTRODUCTION
Diabetes Type 2 (TD2) prevalence is rapidly increases and prevention of this disease has become a priority public health goal.[1] This predominantly involves dietary modifications[2,3] which are: limited caloric intake to prevent or correct excess weight, adequate intake of dietary fiber, preference for complex carbohydrates, limitation of saturated fats and regular of Physical activity. The cessation of smoking[4] and moderate consumption of alcohol[5] have also shown a protective effect. Indeed, the use of medicinal therapies is only a second option when lifestyle modifications prove to be insufficient.[3] The beverage from roasted and ground coffee beans is one of the most consumed beverages in the world, with 500 billion cups of coffee consumed in 2010 according to the International Coffee Organization (ICO).[6] Its consumption is accompanied by different physiological responses affecting the cardiac, digestive, cerebral, renal, pulmonary and endocrine systems.[7] Thus, coffee consumption has been associated with a reduction in the frequency and the age at which the Parkinson’s disease appears.[8] Blood pressure, waist circumference, fasting blood glucose and cholesterol were also inversely proportional to coffee consumption.[9] An inverse and significant relationship was found between coffee consumption and total, cardiac and cardiovascular mortality rates in a population of type 2 diabetics monitored for 20 years.[10] Several studies have also shown an association between coffee consumption and the lesser frequency of type 2 diabetes.[11] However, caffeine, the major bioactive element of coffee, has a paradoxical effect on glucose metabolism. Indeed, chronic caffeine intake by diet does not affect glucose metabolism and is unlikely to contribute to the decreased risk of type 2 diabetes induced by coffee.[12] Similarly, the effect of caffeine on insulin is more pronounced if caffeine is administered alone rather than by coffee consumption.[13]

The aim of this study is to assess the short-term the activity of the aqueous extract of the roasted and ground coffee beans of Coffea canephora robusta on the glycaemia of normoglycemic rats and rats subjected to the glucose tolerance test.

2. MATERIALS AND METHODS
2.1. Animal Equipment
The albino rats of Wistar strain were used for this study. These rats come from the Pasteur Institute Adiopodoumé (Abidjan, Ivory Coast), and their weigh between 120
and 150 g. These animals are breaded in airy metallic cages at the temperature of 24 ± 3°C, with a photoperiod of 12 hours and a humidity of 50% for 7 days prior to experimentation. The rats have ad libitum access to water and food.

2.2. Plant material

The plant material used is roasted and ground coffee beans of Coffea canephora robusta. These coffee beans come from Ivory Coast. The robusta coffee is grown in plains in wetter conditions, as the parts of Central and West Africa, Southeast Asia and parts of Brazil. The cherries of this coffee tree are round, small and thicker than those of Arabicas. The grains of this variety are sold cheaper on the market and often enter into the composition of soluble coffees. Robusta coffee accounts for just under 23.6% of world production.

2.3. Methods

2.3.1. Phytochemical Screening

Phytochemical tests are qualitative tests to characterize the different chemical groups contained in a plant organ. These are physicochemical reactions which make it possible to identify the presence of chemical substances.

2.3.2. Preparation of extracts

2.3.2.1. Preparation of the aqueous extract

The aqueous extract is obtained by the infusion of roasted and ground coffee beans of Coffea canephora robusta (Ccr). A filter coffee machine Daily collection inox timer isotherme HD7479/20 of Philips brand was used to prepare coffee. The infusion was made with 30 g of roast and ground coffee beans of Ccr in 175 ml of distilled water. The filtrate obtained is evaporated in an oven at a temperature of 60°C. The crystals obtained are pulverized. The captured fine powder is kept refrigerated in sterile glass jars sealed. This technique yielded 3 g of dry extract, corresponding to a yield of 10%.

2.3.2.2. Preparation of the ethanolic extract 70% (EE) and Residual (ERA)

The 70% ethanolic and residual extracts are obtained by dissolving 5 g of aqueous extract of roasted and ground coffee beans in a mixer during 5 rotations of 1 minute in 100 ml of an aqueous-alcoholic solution (70% methanol). The captured homogenate is introduced into a separating funnel which allows it to be separated into two phases, a hydro alcoholic phase and the residue. These two phases are subsequently dried in an oven at 50°C. This technique made it possible to obtain 3.655 g of ethanolic extract and 1.045 g of aqueous residual extract, corresponding respectively to a yield of 73.3% and 20.9%.

2.3.3. Study of the activity of Aqueous Extract (AE), Aqueous Residual Extract (ARE) and Ethanolic Extract 70% (EE) on the glucose of the normoglycemic rats

The evaluation of the hypoglycemic effect was followed in the short term for 4 hours following oral administration of various increasing doses of Aqueous Extract (AE), Aqueous Residual Extract (ARE) and Ethanolic Extract 70% (EE) of Coffee canephora robusta. This experiment was made with 90 Wistar rats distributed in 15 batches of 6 rats.

The blood glucose of the rats is measured using an Accu-Chek Active glucometer and test strips. In this study, the rats were fasted for 12 hours before the experiments. Blood glucose is first determined just before treatment; this is the initial blood glucose (t0). After treating the animals, blood glucose is measured every hour for 4 hours and the percentage change in blood glucose relative to the initial blood glucose is calculated.

2.3.3.1. Dose-response effect of the Aqueous Extract (AE)

For this study, 30 rats were used. They were divided into 5 lots of 6 rats.
- Lot 1: Normoglycemic control rats receiving distilled water (10 ml/kg bw).
- Lot 2: rats treated with AE at the dose of 20 mg/kg bw.
- Lot 3: rats treated with AE at the dose of 40 mg/kg bw.
- Lot 4: rats treated with AE at the dose of 50 mg/kg bw.
- Lot 5: rats treated with glibenclamide (reference substance) at the dose of 10 mg/kg bw.

2.3.3.2. Dose-response effect of Ethanolic Extract 70% (EE)

For this study, 30 rats were used. They were divided into 5 lots of 6 rats.
- Lot 1: Normoglycemic control rats receiving distilled water (10 ml/kg bw).
- Lot 2: rats treated with EE at the dose of 20 mg/kg bw.
- Lot 3: rats treated with EE at the dose of 40 mg/kg bw.
- Lot 4: rats treated with EE at the dose of 50 mg/kg bw.
- Lot 5: rats treated with glibenclamide (reference substance) at the dose of 10 mg/kg bw.

2.3.3.3. Dose-response effect of the Aqueous Residual Extract (ARE)

For this study, 30 rats were used. They were divided into 5 lots of 6 rats.
- Lot 1: Normoglycemic control rats receiving distilled water (10 ml/kg bw).
- Lot 2: rats treated with ARE at the dose of 5 mg/kg bw.
- Lot 3: rats treated with ARE at the dose of 10 mg/kg bw.
- Lot 4: rats treated with ARE at the dose of 20 mg/kg bw.
- Lot 5: rats treated with glibenclamide (reference substance) at the dose of 10 mg/kg bw.

2.3.4. Effect of AE, ARE and EE during the glucose tolerance test

The evaluation of the various extracts [ARE (5 mg/kg bw), AE (20 mg/kg bw) and EE (mg/kg bw)] of roasted and ground coffee beans of Coffea canephora robusta,
on the regulation and peripheral use of glucose in normal Wistar rats, was demonstrated in a state of oral hyperglycaemia. For this study, 72 male rats were divided into 12 batches of 6 rats. The rats were fasted for 12 hours before the experiments.

2.3.4.1. Blood glucose measurement in pretreated rats
Hyperglycaemia is caused by oral administration of glucose to rats at a dose of 3 g/kg body weight. For this study, 30 rats were divided into 6 batches of 5 rats.
- Lot 1: Negative control rats receiving distilled water (10 ml/kg bw) only.
- Lot 2: positive control rats receiving distilled water (10 ml/kg bw), and 30 minutes after, 3 g/kg bw of glucose.
- Lot 3: rats receiving 5 mg/kg bw of ARE, then 3 g/kg bw of glucose 30 minutes later.
- Lot 4: rats receiving 20 mg/kg bw of AE, then 3 g/kg bw of glucose 30 minutes later.
- Lot 5: rats receiving 100 mg/kg bw of EE, then 3 g/kg bw of glucose 30 minutes later.
- Lot 6: rats receiving glibenclamide (10 mg/kg bw), then 3 g/kg bw of glucose 30 minutes later.

The blood glucose levels of the rats in each batch were measured immediately prior to the administration of the substances or distilled water and then, after treatment, at intervals of 30 minutes, for 4 hours. The percentage of induction of hyperglycaemia and the percentage of reduction of the induced hyperglycaemia are then calculated.

2.3.4.2. Blood glucose measurement in post-treated rats
Sampling is the same as for pretreated rats. However, in this series of experiments, the different batches of rats receive the doses of coffee [ARE (5 mg/kg bw), AE (20 mg/kg bw) and EE (100 mg/kg bw)] or glibenclamide (10 mg/kg bw) 30 minutes after induction of hyperglycaemia by oral administration of 3 g/kg glucose bw. The blood glucose of the rats of each batch is measured just prior to administration of glucose and thereafter at intervals of 30 minutes for 4 hours. The percentage of induction of hyperglycaemia and the percentage of reduction of induced hyperglycaemia are also calculated.

2.4. Statistical Analysis
The statistical analysis was performed using the Graph Pad Prism 5 software (San Diego, USA). The analysis of variance ANOVA (One-way ANOVA) followed by the Student-Newman-Keuls test was used for comparison of results. The difference is considered statistically significant when P <0.05.

3. RESULTS
3.1. Phytochemical Screening
The main chemical groups identified according to the conventional methods of characterization are recorded in Table I. The aqueous extract of the roasted and ground coffee beans of Coffea canephora robusta reveals the presence of sterols and polyterpenes, polyphenols, flavonoids, tannins, compounds quinones, saponosides and alkaloids.

3.1. Hypoglycemic tests
The variations of the glycaemia in rats following the oral administration of different doses of AE, glibenclamide (batches tests) or distilled water (control batch) are shown in the graph of Figure 1. Blood glucose in rats receiving only distilled water (control) did not vary significantly (p> 0.05) throughout the study (4 hours). It remains at 0.70 ± 0.05 g/L. AE at doses of 20, 40 and 50 mg/kg bw, induces a dose-dependent increase in blood glucose in the treated rats. This increase in blood glucose was significant (p <0.05) one hour after treatment at doses of 40 mg/kg bw and 50 mg/kg bw and not significant (p> 0.05) at the dose of 20 mg/kg bw. On the other hand, AE at the same dose of 20 mg/kg bw induced a non-significant decrease (p> 0.05) in blood glucose two (2) hours after administration of the substance. This decrease remains significant (p<0.05) up to the 4th hours.

Figure 3 shows variations of glycaemia in rats following oral administration of different doses of EE, glibenclamide (batches test) or distilled water (control batch). EE at doses of 50 and 100 mg/kg bw, induced a decrease in blood glucose in the treated rats. This decrease in blood glucose was significant (p<0.05) at the dose of 100 mg/kg bw and not significant (p>0.05) at the dose 50 mg/kg bw one hour after treatment. This decrease significantly increased (p<0.05) throughout the experimental period up to 4 hours after administration of the extract with reductions of 24.66% and 27.78% at the respective doses of 50 and 100 mg/kg bw.

3. 2. Glucose tolerance test
3.2.1. Antihyperglycemic effect in pretreated rats.
In this series of experiments (Fig 4), the administration or not glibenclamide at 10 mg/kg bw or the different extracts (ARE = 5 mg/kg bw, AE = 20 mg/kg bw and EE = 100 mg/kg bw), 30 min afterwards, did not significantly (p> 0.05) modify the blood glucose of the pretreated animals. At this moment, glucose administration at 3 mg/kg bw leads to significant increases (p<0.05) of the glycaemia in all pretreated or untreated animals. The peak of hyperglycaemia, appearing 30 minutes after this administration of glucose, is variable depending on whether the rats were pretreated or not with ARE, AE and EE or glibenclamide.

In rats receiving distilled water (positive control), the glucose administered results in an increase in blood
glucose, with a peak of hyperglycemia which is of the order of 0.39 g/L. Subsequently, hyperglycemia is progressively reduced and the basal glucose level is found 3 hours 30 minutes after administration of the glucose.

AE and ARE respectively at doses of 20 and 5 mg/kg bw did not have significant effects (p > 0.05) on glucose-induced hyperglycemia at 3 g/kg bw. Indeed, in rats receiving AE and ARE respectively at doses of 20 and 5 mg/kg bw, the hyperglycemia which appears 30 minutes after the administration of glucose is 0.40 and 0.38 g/L and the return to the initial blood glucose occurred after 3 hours 10 minutes and 2 hours 50 minutes respectively.

On the other hand, the dose of 100 mg/kg bw of EE reduces hyperglycemia induced by subsequent administration of 3 g/kg bw glucose. In this case, the peak of hyperglycemia which appears 30 minutes after the administration of the glucose is respectively 0.30 g/L. Initial blood glucose is reached after 2 hours 20 minutes, followed by hypoglycemia of 0.15 g/L.

When rats are pretreated with glibenclamide at the dose of 10 mg/kg bw, hyperglycemia induced 30 minutes after administration of glucose to 3 g/kg bw is 0.22 g/L. After this, hyperglycemia is gradually reduced as a function of time until the initial blood glucose level is reached after 1 hour 55 minutes, then a hypoglycemia of 0.23 g/L is measured.

Table II gives, as a function of time, the percentages of reductions in glucose-induced hyperglycemia when the animals are pretreated or not with different extracts or glibenclamide.

3.2.2. Anti-hyperglycemic effect in post-treated rats.

Oral administration of glucose at the dose of 3 g/kg bw (Figure 5) provokes an hyperglycemia in post treated or untreated rats with different extracts (ARE = 5 mg/kg bw, AE = 20 mg/kg bw and EE = 100 mg/kg bw) or the glibenclamide. The peak of hyperglycemia, which is 0.42 ± 0.05 g/L, occurs 30 minutes after the administration. Subsequently, this hyperglycemia gradually decreases until it returns to the initial value. The decrease in hyperglycemia and the time taken to return to the initial value of blood glucose are variable depending on whether the animals were post-treated with the different extracts or glibenclamide.

In rats receiving only glucose (3 g/kg of bw) 30 minutes later, there was a maximum hyperglycemia of 0.40 g/L. Subsequently, this hyperglycemia gradually decreases and the initial blood glucose level is recovered approximately 3 hours after the administration of the glucose.

ARE at a dose of 5 mg/kg bw administered 30 min after oral administration of glucose to animals showed no significant effect (p > 0.05) on hyperglycemia (0.38 g/L) induced by the latter and the return to the initial blood glucose occurs after 2 hours 30 minutes.

When glucose administration (3 g/kg bw) is followed 30 minutes after, of EE at the dose of 100 mg/kg bw, glucose-induced hyperglycemia is reduced with time (Figure 5) and the return to the initial blood glucose occurs after 1 hour 50 minutes. Thereafter, hypoglycemia of (0.19 g/L) appears.

On the other hand, when this administration of glucose is followed, 30 minutes later by AE at a dose of 20 mg/kg bw, glucose-induced hyperglycemia increases significantly (p < 0.05) one hour after. Thereafter, the decrease in blood glucose appears and the initial blood glucose is found 2 hours 50 minutes after the administration of glucose.

Glibenclamide (10 mg/kg bw) administered 30 min after glucose administration, results in a greater reduction in induced hyperglycemia over time and returns to the initial glucose level after 1 hour 30 minutes. There is then a hypoglycemia of 0.28 g/L.

Table III gives, as a function of time, the percentages of reductions in glucose-induced hyperglycemia when this administration of glucose is followed 30 minutes after those of the different extracts or glibenclamide.
Figure 2: Variations in rats’ blood glucose following oral administration of different doses of ARE, glibenclamide (tests) or distilled water (control).

Figure 3: Variations in rats’ glucose following oral administration of different doses of EE, glibenclamide (tests) or distilled water (control).

Figure 4: Variation in the glycemia of the rats pretreated by the oral administration of the various extracts AE, ARE, EE and glibenclamide (tests) or distilled water (control) during the glucose tolerance test.
Figure 5: Variation in the glycemia of the rats post-treated by the oral administration of the various extracts AE, ARE, EE and glibenclamide (tests) or distilled water (control) during the glucose tolerance test.

Table I: Results of the phytochemical screening of the aqueous extract of the roasted and ground coffee beans of Coffea canephora robusta.

<table>
<thead>
<tr>
<th>Chemical Components</th>
<th>Reagents</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sterols and (polyterpenes)</td>
<td>LIBERMANN</td>
<td>+</td>
</tr>
<tr>
<td>Polyphenols</td>
<td>FeCl₂</td>
<td>+</td>
</tr>
<tr>
<td>Tannins</td>
<td>Gal</td>
<td>FeCl₃</td>
</tr>
<tr>
<td></td>
<td>Cat</td>
<td>STIASNY</td>
</tr>
<tr>
<td>Quinonic Substances</td>
<td>BORNTRAEGEN</td>
<td>+</td>
</tr>
<tr>
<td>Alkaloids</td>
<td>D</td>
<td>DRAGENDORFF</td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>BOUCHARDAT</td>
</tr>
<tr>
<td></td>
<td>VM</td>
<td>VALSEN-MAYER</td>
</tr>
<tr>
<td>Saponosides</td>
<td>Foam Index</td>
<td>+</td>
</tr>
<tr>
<td>Favonoides</td>
<td>Mg²⁺</td>
<td>+</td>
</tr>
</tbody>
</table>

Table II: Reduction of glucose-induced hyperglycemia in rats pretreated with extracts AE, ARE, EE or glibenclamide.

<table>
<thead>
<tr>
<th>Time after glucose administration (minutes)</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>150</th>
<th>210</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperglycemic control</td>
<td>0</td>
<td>25.64</td>
<td>43.59</td>
<td>82.05</td>
<td>97.43</td>
</tr>
<tr>
<td>AE (20 mg/kg bw)</td>
<td>0</td>
<td>30</td>
<td>47.5</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>ARE (5 mg/kg bw)</td>
<td>2.4</td>
<td>31.58</td>
<td>50</td>
<td>94.74</td>
<td>118.42</td>
</tr>
<tr>
<td>EE (100 mg/kg bw)</td>
<td>9.56</td>
<td>36.67</td>
<td>60</td>
<td>116.67</td>
<td>136.67</td>
</tr>
<tr>
<td>Glibenclamide (10 mg/kg bw)</td>
<td>14.4</td>
<td>42.31</td>
<td>69.23</td>
<td>126.92</td>
<td>161.54</td>
</tr>
</tbody>
</table>

Table III: Reduction of glucose-induced hyperglycemia in post-treated rats with AE, ARE, EE or glibenclamide extracts.

<table>
<thead>
<tr>
<th>Time after glucose administration (minutes)</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>180</th>
<th>240</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyperglycemia Control</td>
<td>0</td>
<td>22.5</td>
<td>45</td>
<td>70</td>
<td>98</td>
<td>100</td>
</tr>
<tr>
<td>AE (20 mg/kg bw)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>34.88</td>
<td>104.65</td>
<td>109.30</td>
</tr>
<tr>
<td>ARE (5 mg/kg bw)</td>
<td>0</td>
<td>21.05</td>
<td>60.52</td>
<td>89.47</td>
<td>123.68</td>
<td>131.58</td>
</tr>
<tr>
<td>EE (100 mg/kg bw)</td>
<td>0</td>
<td>35.71</td>
<td>71.42</td>
<td>104.76</td>
<td>128.57</td>
<td>138.09</td>
</tr>
<tr>
<td>Glibenclamide (10 mg/kg bw)</td>
<td>0</td>
<td>48.72</td>
<td>92.30</td>
<td>125.64</td>
<td>158.97</td>
<td>169.23</td>
</tr>
</tbody>
</table>
4. DISCUSSION

According to the chemical compounds contained in the plants are grouped into three classes of secondary metabolites namely phenol compounds, alkaloids and terpenes. These chemical compounds contained in the aqueous extract of the roasted and ground coffee beans of Coffea canephora robusta have been found by other authors who have carried out work on the green and roasted coffee of arabica and robusta varieties. Thus have demonstrated and even quantified the chemical composition of these three classes of secondary metabolites in green and roasted Coffee varieties arabica and robusta. The leaves of Coffea canephora robusta contain various chemical compounds such as sterols, polysterpenes, polyphenols, flavonoids, alkaloids and saponosides. The physicochemical study of Mitragyna inermis, a plant with antidiabetic properties, of the same family as that of the coffee tree revealed the presence of the same chemical constituents contained in the aqueous extract of the roasted and ground coffee beans of Coffea canephora robusta.

The chemical compounds contained in the AE of the roasted and ground coffee beans of Coffea canephora robusta would be responsible for the pharmacological activities of this extract.

The increase in blood glucose at doses of 40 and 50 mg/kg bw of AE, could be explained by the action of caffeine. Indeed, HPLC study revealed in the aqueous extract roasted and ground coffee beans of Coffea canephora robusta, a high caffeine content of 7.5% but caffeine inhibits the transport of glucose stimulated by insulin in adipocytes. This hyperglycemia increase could also be explained by the fact that the ingestion of the coffee drink increases the adrenaline, which can raise blood sugar levels in a short period of time. Short-term studies have also shown that coffee and caffeine can increase blood sugar and insulin levels.

EE at doses of 50 and 100 mg/kg bw induces a significant decrease in blood glucose which could be explained by the presence in this extract of phenol compounds such as polyphenols and flavonoids which are recognized as having hypoglycemic effects.

For the glucose tolerance test, the different extracts (AE, ARE and EE) from the roasted and ground coffee beans of Coffea canephora robusta induce an increasing decrease in blood glucose levels in normoglycemic rats, as is glibenclamide. Indeed, ingestion of coffee improves glucose tolerance, insulin sensitivity and hyperinsulinenemia. This effect could be attributed to a reduction in the expression of inflammatory adipocytokine. Similarly, some metabolites of chlorogenic acids would have a hypoglycemic action and stimulate the production of insulin. Our study shows that aqueous residual aqueous and ethanolic extracts of the roasted and ground coffee beans of Coffea canephora robusta contain hypoglycemic substances because they act as the glibenclamide, which is a hypoglycemic sulfonamide. Indeed, it has been reported that sulfonylureas induce hypoglycaemia in normoglycemic rats by stimulating the production of insulin by the beta cells of the pancreas, thus promoting the storage of glycogen in the liver.

The oral administration of glucose per os at a dose of 3 g/kg bw causes a significant increase in blood glucose levels in rats followed by a gradual return to the initial level. Under the same experimental conditions, when animals are pretreated or post-treated with AE (20 mg/kg bw), ARE (5mg/kg bw) and EE (100 mg/kg bw), glucose-induced hyperglycemia is significantly reduced, and the return to the initial blood glucose is much faster. These effects were also observed with glibenclamide at 10 mg/kg bw. Thus, like glibenclamide, the various aqueous (AE), aqueous residual (ARE) and ethanolic (EE) extracts induce a significant reduction in glucose-induced hyperglycemia. These extracts therefore have hypoglycaemic effects and anti-hyperglycemic effects. The similar effects of these extracts with those of glibenclamide on blood glucose suggest that these extracts could act by the same mechanism as the reference anti-hyperglycemic substance used. Thus, hypoglycemia and the reduction of hyperglycemia observed in rats treated with aqueous, residual aqueous and ethanol extracts of the roasted and ground coffee beans of Coffea canephora robusta could be explained by a stimulation of insulin secretion by the pancreas and / or, probably, an increase in the peripheral use of glucose in the presence of these extracts.

CONCLUSION

This study aims to assess the short-term the activity of the various drinks derived from powder of the aqueous extract of the roasted and ground coffee beans of Coffea canephora robusta on the glycemia of normoglycemic rats and rats subjected to the glucose tolerance test. A hypoglycemic effect and an improvement of the tolerance to glucose were observed at doses of 5, 20 and 100 mg/kg bw, respectively for the various extracts of Aqueous Residuel (ARE), Aqueous (AE) and Ethanolic 70% (EE) administered orally. A better activity similar of the glibenclamide was observes with the extract ethanol 70%. The presence of antioxidants (polyphenols, flavonoids and alkaloids) in the extract may provide an explanation for the hypoglycemic and anti-hyperglycemic effects observed. These results demonstrate the importance and the use of this drink (coffee) in the world. Moreover, these same effects would explain the preventive action of this drink (coffee) as to the occurrence of diabetes type 2.

Ethical Approval

The experimental procedures and protocols used in this study were approved by the Ethical Committee of Health Sciences, University Félix Houphouet-Boigny. These guidelines were in accordance with the European Council Legislation 87/607/EEC for the protection of
experimental animals. All efforts were made to minimize animal suffering and reduce the number of animals used.

REFERENCES
15. Lambard Ch. « Le café de la terre à la tasse». Centre de Cafécologie. Bordeaux (France), 2003.
16. FAO. (Food and Agriculture Organisation) Manual on the application of the HACCPsystem in mycotoxin prevention and control. Food and Nutrition, 2001; 73. ISSN 0254-4725.

